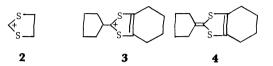

¹³C NMR Spectra of 1,3-Dithiolan-2-ylium Ions and 2-Alkylidene-1,3-dithiolanes

Tadashi Okuyama* and Takayuki Fueno Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560 (Received September 9, 1985)


Synopsis. ¹³C NMR spectra of various 2-substituted 1,3-dithiolan-2-ylium perchlorates **5** as well as 2-alkylidene-1,3-dithiolanes **6** are measured. Chemical shifts induced by protonation of **6** to form **5** are compared with those found with the unsaturated analogues, 1,3-dithiolylium ions, implying the aromatic charge delocalization in the latter ions.

1,3-Dithiolylium ion 1 is an unsaturated five-membered ring cation which possesses potential aromatic sextet. The stability of this ion is usually attributed to this 6π -electron delocalization (1a).¹⁾ The NMR

spectral data of this class of cations have been considered to support this view in one paper²⁾ while the other workers³⁾ rationalized the observed ¹³C chemical shifts only by the sulfur conjugation (**1b**). The former paper²⁾ examined both ¹H and ¹³C NMR spectra of **1** and the saturated analogue, 1,3-dithiolanylium ion **2**, as well as their neutral precursors. The signal of 2-H of **1** appeared at a lower field than that of **2**, whereas the chemical shift of 2-C of **1** is much smaller than that of **2**, suggesting the aromatic ring current and charge delocalization in **1**. On the other hand, the latter workers³⁾ compared ¹³C NMR spectra of 2-substituted deriva-

tives of 1 with those of their deprotonated derivatives; e. g., 3 and 4. Chemical shift differences between 3

and 4 were found to be much greater at 2-C than at 4-C.

In the present investigation, we have measured ¹³C NMR spectra of substituted 1,3-dithiolan-2-ylium ions 5 and 2-alkylidene-1,3-dithiolanes 6 in order to examine the conclusion deduced from the similar comparison between 3 and 4. Perchlorates of 5 were

prepared from acyl chlorides and 1,2-ethanedithiol and converted to **6** by the treatments with triethylamine.⁴⁾ ¹³C FT NMR spectra were recorded at 27 °C on a JNM-FX 100 spectrometer operating at 25.05 MHz.⁵⁾ Spectra of **5** and **6** were measured as 5—10% solutions in CF₃COOH-CF₃COOD and CDCl₃, respectively. Results are summarized in Table 1.

Table 1. ¹³C Chemical Shifts of 5 and 6^{a)}

No.	$R(R_1, R_2)$	2-C	4-C	2-C' b)	Others
2 ^{c)}	Н	221.4	46.4		
5a	CH_3	245.0	47.8	24.4	
5 b	CH_3CH_2	253.4	46.8	34.0	15.6
5c	$(CH_3)_2CH$	259.1	46.8	41.7	28.5
5e	$(CH_3)_3C$	264.1	46.5	48.5	32.8
5d	$C_6H_5CH_2$	242.6	46.8	45.2	130.5, 131.5, 135.0
5f	C_6H_5	234.6	45.4	143.3	132.0, 132.3, 144.0
5g	$p\text{-CH}_3\text{OC}_6\text{H}_4$	225.5	44.2	126.6	57.9, 118.1, 136.8, 174.3
6a	(H, H)	144.3	38.4	99.3	
		(100.7)	(9.4)	(-74.9)	
6b	(H, CH_3)	135.2	36.9, 37.2	110.6	9.3
		(118.2)	(9.7)	(-76.6)	
6c	(CH_3, CH_3)	127.1	37.9	119.1	24.2
		(132.0)	(8.9)	(-77.4)	
6d	(H, C_6H_5)	137.8	35.4, 39.5	115.5	125.5, 127.0, 128.0, 137.1
		(104.8)	(9.3)	(-70.3)	

a) ppm downfield from internal TMS. Values in parentheses show the chemical shift differences between 5 and 6. b) The carbon next to 2-C. c) Taken from reference 2.

Assignments of signals were made by comparisons with those of relevant compounds.

Resonance of 2-C of dithiolanylium ions 5 occurs at the lowest field reflecting a positive charge. Among the chemical shifts of 2-C of 5, the largest is that of 5e (R=t-Bu), decreasing in the order 5e(t-Bu)>5c(i-Pr)> $5b(Et)>5a(Me)>5d(PhCH_2)$. This order coincides with that of electron-donating ability of alkyl groups to the positive center, e. g., in terms of the σ_p^+ substituent constants, and indicates decreasing order of the charge density at the positive carbon. The 2-phenyl and 2-(p-methoxyphenyl) cations (5f and 5g) have the 2-C signals at still higher field.

2-Alkyl-1,3-dithiolanylium ion **5** is formed by protonation of 2-alkylidene-1,3-dithiolane **6**. The protonation causes large downfield (100—132 ppm) and upfield (70—77 ppm) shifts at 2-C and 2-C' (the carbon next to 2-C), respectively, as given in parentheses in Table 1. The chemical shift of 4-C (5-C) changes only by about 9 ppm. The upfield shift of 2-C' must mostly be due to the hybridization change from sp² to sp³. The downfield shifts at 2-C and 4-C come primarily from a positive charge of the cation **5**. Similar changes in the chemical shifts of the unsaturated analogues (**3** and **4** and related dithiole derivatives) were found to be 74—89, —74—81, and 28 ppm at 2-C, 2-C', and 4-C, respectively.³⁾

The changes at 2-C' are much the same between the dithiole and dithiolane derivatives (70—80 ppm upfield shift), as expected for the same hybridization change. However, downfield shifts at 2-C and 4-C of dithiolylium ions are 30—40 ppm smaller and about 20 ppm larger than those of dithiolanylium ions, respectively. This indicates that the charge density in dithiolylium ion 1 is smaller at 2-C while greater at 4-C as compared with that in dithiolanylium ion 2. That is, the positive charge in 1 delocalizes extensively involving the 4 and 5 carbons.

¹³C NMR data presented by Meier et al.³⁾ should be taken as indicating that the positive charge delocalizes over the whole ring system of dithiolylium ion (la), contrary to their conclusion.

References

- 1) See for reviews, H. Prinzbach, and E. Futterer, Adv. Heterocycl. Chem., 7, 39 (1966); N. Lozac'h and M. Stavaux, ibid., 27, 151 (1980).
- 2) K. Sakamoto, N. Nakamura, M. Ōki, J. Nakayama, and M. Hoshino, *Chem. Lett.*, 1977, 1133.
- 3) U. Timm, U. Plücken, H. Petersen, and H. Meier, J. Heterocycl. Chem., 16, 1303 (1979).
- 4) T. Okuyama, W. Fujiwara, and T. Fueno, *Bull. Chem. Soc. Ipn.*, in press.
 - 5) We thank Y. Terawaki for recording the spectra.